Project Title	Funding	Strategic Plan Objective	Institution	
dentification of candidate genes at the synapse in utism spectrum disorders	\$167,751	Q2.Other	Yale University	
Morphogenesis and function of the cerebral cortex	\$409,165	Q2.Other	Yale University	
Role of GluK6 in cerebella circuitry development	\$52,106	Q2.Other	Yale University	
Illelic choice in Rett syndrome	\$394,425	Q2.S.D	Winifred Masterson Burke Medical Research Institut	
Developing novel automated apparatus for studying attery of social behaviors in mutant mouse models for utism	\$217,948	Q2.Other	Weizmann Institute of Science	
tole of neuronal migration genes in synaptogenesis and lasticity	\$47,606	Q2.Other	Weill Cornell Medical College	
he role of intracellular metabotropic glutamate receptor at the synapse	\$25,890	Q2.S.D	Washington University in St. Louis	
Role of intracellular mGluR5 in fragile X syndrome and autism	\$75,000	Q2.S.D	Washington University in St. Louis	
Nolecular mechanisms regulating synaptic strength	\$296,257	Q2.Other	Washington University	
stablishing zebrafish as a model for RAI1 gene dosage	\$74,750	Q2.S.D	Virginia Commonwealth University	
Senetic and developmental analyses of fragile X yndrome	\$544,592	Q2.S.D	Vanderbilt University	
be3a requirements for structural plasticity of synapses	\$40,000	Q2.Other	Univ of North Carolina	
teroid receptors and brain sex differences	\$301,240	Q2.S.B	University of Wisconsin - Madison	
the mechanism and significance of Evf ncRNA egulation of the DLX genes	\$2,425	Q2.S.D	University of Washington	
Developmental versus acute mechanisms mediating ultered excitatory synaptic function in the fragile X yndrome mouse model	\$127,500	Q2.S.D	University of Texas Southwestern Medical Center	
Cortical circuit changes and mechanisms in a mouse nodel of fragile X syndrome	\$290,266	Q2.S.D	University of Texas Southwestern Medical Center	
legulation of synapse elimination by FMRP	\$52,154	Q2.S.D	University of Texas Southwestern Medical Center	
tudy of fragile X mental retardation protein in synaptic unction and plasticity	\$392,087	Q2.S.D	University of Texas Southwestern Medical Center	
Coordinated control of synapse development by autism- nked genes	\$150,000	Q2.S.D	University of Texas Southwestern Medical Center	
Mouse models of human autism spectrum disorders: Sene targeting in specific brain regions	\$400,000	Q2.S.D	University of Texas Southwestern Medical Center	
roteomics in drosophila to identify autism candidate ubstrates of UBE3A	\$316,355	Q2.S.D	University of Tennessee Health Science Center	
unction and structure adaptations in forebrain evelopment	\$580,377	Q2.Other	University of Southern California	
Met signaling in neural development and circuitry ormation	\$81,998	Q2.Other	University of Southern California	
ingrailed and the control of synaptic circuitry in rosophila	\$112,500	Q2.Other	University of Puerto Rico Medical Sciences Campus	

Project Title	Funding	Strategic Plan Objective	Institution
Functional circuit disorders of sensory cortex in ASD and RTT	\$261,599	Q2.S.D	University of Pennsylvania
Regulation of 22q11 genes in embryonic and adult forebrain	\$9,806	Q2.S.D	University of North Carolina at Chapel Hill
GABAergic dysfunction in autism	\$290,090	Q2.Other	University of Minnesota
Homeostatic regulation of presynaptic function by dendritic mTORC1	\$31,705	Q2.Other	University of Michigan
The microRNA pathway in translational regulation of neuronal development	\$376,031	Q2.S.D	University of Massachusetts Medical School
Synaptic phenotype, development, and plasticity in the fragile X mouse	\$421,590	Q2.S.D	University of Illinois at Urbana Champaign
Serotonin signal transduction in two groups of autistic patients	\$157,000	Q2.Other	University of Illinois at Chicago
ACE Center: Cognitive affective and neurochemical processes underlying is in autism	\$382,540	Q2.Other	University of Illinois at Chicago
Self-injurious behavior: An animal model of an autism endophenotype	\$0	Q2.Other	University of Florida
Molecular basis of autism associated with human adenylosuccinate lyase gene defects	\$0	Q2.S.D	University of Delaware
Role of micro-RNAs in ASD affected circuit formation and function	\$127,085	Q2.Other	University of California, San Francisco
Roles of Wnt signaling/scaffolding molecules in autism	\$28,000	Q2.Other	University of California, San Francisco
Analysis of Fgf17 roles and regulation in mammalian forebrain development	\$52,154	Q2.Other	University of California, San Francisco
Autism-specific mutation in DACT1: Impact on brain development in a mouse model	\$231,750	Q2.Other	University of California, San Francisco
A sex-specific dissection of autism genetics	\$270,375	Q2.S.B	University of California, San Francisco
A sex-specific dissection of autism genetics	\$150,000	Q2.S.B	University of California, San Francisco
Neuroligins and neurexins as autism candidate genes: Study of their association in synaptic connectivity	\$60,000	Q2.Other	University of California, San Diego
A systems biology approach to unravel the underlying functional modules of ASD	\$655,975	Q2.Other	University of California, San Diego
Cellular characterization of Caspr2	\$23,907	Q2.Other	University of California, San Diego
Kinetics of drug macromolecule complex formation	\$729,415	Q2.Other	University of California, San Diego
The role of the autism-associated gene tuberous sclerosis complex 2 (TSC2) in presynaptic development	\$56,000	Q2.S.D	University of California, San Diego
Role of autism-susceptibility gene, CNTNAP2, in neural circuitry for vocal communication	\$0	Q2.Other	University of California, Los Angeles
Imaging PTEN-induced changes in adult cortical structure and function in vivo	\$278,686	Q2.Other	University of California, Los Angeles

Project Title	Funding	Strategic Plan Objective	Institution
The role of FOX-1 in neurodevelopment and autistic spectrum disorder	\$142,677	Q2.Other	University of California, Los Angeles
Functional analysis of neurexin IV in Drosophila	\$148,746	Q2.Other	University of California, Los Angeles
Investigation of sex differences associated with autism candidate gene, CYFIP1	\$31,561	Q2.S.B University of California, Los Angel	
TrkB agonist(s), a potential therapy for autism spectrum disorders	\$269,500	Q2.S.D	University of California, Los Angeles
BDNF and the restoration of spine plasticity with autism spectrum disorders	\$564,519	Q2.S.D	University of California, Irvine
The role of MeCP2 in Rett syndrome	\$337,753	Q2.S.D	University of California, Davis
Angelman syndrome (AS)	\$208,335	Q2.S.D	University of Alabama at Birmingham
MeCP2 modulation of BDNF signaling: Shared mechanisms of Rett and autism	\$320,469	Q2.S.D	University of Alabama at Birmingham
Genetic studies of autism-related Drosophila neurexin and neuroligin	\$137,500	Q2.Other	The University of North Carolina at Chapel Hill
Cell adhesion molecules in CNS development	\$541,105	Q2.Other	The Scripps Research Institute
Glial control of neuronal receptive ending morphology	\$422,500	Q2.Other	The Rockefeller University
Defining cells and circuits affected in autism spectrum disorders	\$820,059	Q2.Other	The Rockefeller University
Regulation of 22q11 genes in embryonic and adult forebrain	\$313,000	Q2.S.D	The George Washington University
Function of neurexins	\$464,471	Q2.Other	Stanford University
A systematic test of the relation of ASD heterogeneity to synaptic function	\$875,864	Q2.Other	Stanford University
Synaptic analysis of neuroligin1 function	\$52,154	Q2.Other	Stanford University
Regulation of activity-dependent ProSAP2 synaptic dynamics	\$41,380	Q2.Other	Stanford University
Function and dysfunction of neuroligins in synaptic circuits	\$150,000	Q2.Other	Stanford University
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$158,649	Q2.S.D	Stanford University
Augmentation of the cholinergic system in fragile X syndrome: A double-blind placebo study	\$240,000	Q2.S.D	Stanford University
L-type calcium channel regulation of neuronal differentiation	\$41,380	Q2.S.D	Stanford University
Probing a monogenic form of autism from molecules to behavior	\$312,500	Q2.S.D	Stanford University
Role of neuroligin in synapse stability	\$127,500	Q2.Other	Oklahoma Medical Research Foundation
Excessive cap-dependent translation as a molecular mechanism underlying ASD	\$549,386	Q2.Other	New York University

Project Title	Funding	Strategic Plan Objective	Institution	
Translation regulation in hippocampal LTP and LTD	\$372,141	Q2.S.D	New York University	
Studies on protein synthesis and long-term adaptive responses in the CNS	\$1,992,862	Q2.Other	National Institutes of Health	
Gene silencing in fragile X syndrome	\$323,483	Q2.S.D	National Institutes of Health	
Engrailed genes and cerebellum morphology, spatial gene expression and circuitry	\$474,750	Q2.Other	Memorial Sloan-Kettering Cancer Center	
Brain lipid rafts in cholesterol biosynthesis disorders	\$63,000	Q2.Other	Medical College of Wisconsin	
maging synaptic neurexin-neuroligin complexes by proximity biotinylation: Applications to the molecular pathogenesis of autism	\$0	Q2.Other	Massachusetts Institute of Technology	
Regulation of synaptogenesis by cyclin-dependent inase 5	\$342,454	Q2.Other	Massachusetts Institute of Technology	
nvestigation of postnatal drug intervention's potential in escuing the symptoms of fragile X syndrome in adult nice	\$0	Q2.S.D	Massachusetts Institute of Technology	
Role of Pam in synaptic morphology and function	\$127,497	Q2.Other	Massachusetts General Hospital	
Retrograde synaptic signaling by Neurexin and Neuroligin in C. elegans	\$125,000	Q2.Other Massachusetts Ge		
MicroRNAs in synaptic plasticity and behaviors relevant o autism	\$131,220	Q2.S.D	Massachusetts General Hospital	
Development of novel diagnostics for fragile X syndrome	\$532,677	Q2.S.D	JS Genetics, Inc.	
The role of CNTNAP2 in embryonic neural stem cell egulation	\$150,000	Q2.Other	Johns Hopkins University School of Medicine	
Olfactory abnormalities in the modeling of Rett syndrome	\$355,163	Q2.S.D	Johns Hopkins University	
The microRNA pathway in translational regulation of neuronal development	\$37,604	Q2.S.D	J. David Gladstone Institutes	
Perturbed activity-dependent plasticity mechanisms in autism	\$311,292	Q2.Other	Harvard Medical School	
Activity-dependent phosphorylation of MeCP2	\$173,979	Q2.S.D	Harvard Medical School	
Neuronal activity-dependent regulation of MeCP2	\$437,522	Q2.S.D	Harvard Medical School	
Neuronal activity-dependent regulation of MeCP2 supplement)	\$77,123	Q2.S.D	Harvard Medical School	
Elucidation and rescue of amygdala abnormalities in the Fmr1 mutant mouse model of fragile X syndrome	\$150,000	Q2.S.D	George Washington University	
GABA(A) receptor modulation via the beta subunit	\$226,499	Q2.Other	Emory University	
oung development of a novel PET ligand for detecting xytocin receptors in brain	\$264,000	Q2.Other	Emory University	
rundamental mechanisms of GPR56 activation and equilation	\$134,269	Q2.S.D	Emory University	

Project Title	Funding	Strategic Plan Objective	Institution	
Quantitative proteomic approach towards understanding and treating autism	\$75,000	Q2.S.D Emory University		
Neuroligin regulation of central GABAergic synapses	\$78,000	Q2.Other	Duke University	
maging signal transduction in single dendritic spines	\$386,100	Q2.Other	Duke University	
BDNF secretion and neural precursor migration	\$0	Q2.Other	Dana-Farber Cancer Institute	
New approaches to local translation: SpaceSTAMP of proteins synthesized in axons	\$161,094	Q2.S.D	Dana-Farber Cancer Institute	
eurexin-neuroligin trans-synaptic interaction in learning nd memory	\$100,000	Q2.Other	Columbia University	
Neurexin-neuroligin trans-synaptic interaction in learning and memory	\$100,000	Q2.Other	Columbia University	
Aberrant synaptic form and function due to TSC-mTOR- elated mutation in autism spectrum disorders	\$150,000	Q2.S.D	Columbia University	
Aberrant synaptic function caused by TSC mutation in autism	\$75,000	Q2.S.D	Columbia University	
Slutamate receptor desensitization and its modulation	\$328,338	Q2.Other	Colorado State University	
cell type-based genomics of developmental plasticity in ortical GABA interneurons	\$210,000	Q2.Other	Cold Spring Harbor Laboratory	
ligh-throughput DNA sequencing method for probing he connectivity of neural circuits at single-neuron esolution	\$435,000	Q2.Other	Cold Spring Harbor Laboratory	
Neural circuit deficits in animal models of Rett syndrome	\$44,000	Q2.S.D	Cold Spring Harbor Laboratory	
Cell-based genomic analysis in mouse models of Rett yndrome	\$513,667	Q2.S.D	Cold Spring Harbor Laboratory	
Cellular and molecular alterations in GABAergic inhibitor ircuits by mutations in MeCP2	\$330,774	Q2.S.D	Cold Spring Harbor Laboratory	
The mechanism and significance of Evf ncRNA egulation of the DLX genes	\$438,060	Q2.Other	Children's Memorial Hospital, Chicago	
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Q2.S.D	Children's Memorial Hospital, Chicago	
The effects of Npas4 and Sema4D on inhibitory synapse ormation	\$0	Q2.Other	Children's Hospital Boston	
system connectivity in a high-risk model of autism	\$0	Q2.S.D	Children's Hospital Boston	
utism and the insula: Genomic and neural circuits	\$620,305	Q2.Other	California Institute of Technology	
resynaptic fragile X proteins	\$90,000	Q2.S.D	Brown University	
clucidating the function of class 4 semaphorins in SABAergic synapse formation	\$320,250	Q2.Other	Brandeis University	
n-vivo imaging of neuronal structure and function in a eversible mouse model for autism.	\$28,000	Q2.S.D	Baylor College of Medicine	

Project Title	Funding	Strategic Plan Objective	Institution
Elucidating the roles of SHANK3 and FXR in the autism interactome	\$396,509	Q2.S.D	Baylor College of Medicine
Role of neuroligins in long-term plasticity at excitatory and inhibitory synapses	\$59,918	Q2.Other	Albert Einstein College of Medicine of Yeshiva University